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Abstract—Modeling is an essential step for designing power
amplifier linearizers, which enable operation in higher power
delivery regions. Black-box modeling had become an attractive
method on PA behavioral modeling as it does not require prior
knowledge of the physical equations that govern the nonlinear
behavior of the device. In this study, the investigation of a black
box model based on the Volterra series and modified using
multiple-depth memories is presented. For model validation a
case study was executed with a class AB PA with GaN based
technology, excited by a 900 MHz carrier and stimulated by a
WCDMA 3GPP signal with 3.84 MHz of bandwidth, where a total
of 280 cases were performed. The proposed model is promising,
being able to reduce the normalized mean square error by up to
7.244 dB and computational complexity by up to 81%. The best
NMSE result achieved without overfitting was -46.074 dB for the
proposed model, against -38.830 dB for the low-pass equivalent
Volterra series.

Index Terms—PA, amplifier, behavioral modeling, Volterra,
moving average

I. INTRODUCTION

The power amplifier (PA) [1] plays a crucial role in wireless
communication systems as it consumes the majority of the
energy. Its function is simple: increase the power of the signal
to be transmitted without applying any distortion. However,
due to physical limitations of the semiconductors used in
amplifiers (such as BJTs, FETs, JFETs, MOSFETs, etc.) and
the chosen operation mode (class A, B, AB, etc.), the PA
can operate in regions where its transistors become saturated,
resulting in gain compression. This saturation leads to the
generation of harmonic frequencies and spectrum spreading,
causing distortions in the transmitted signal. Additionally, the
capacitive and inductive effects from the input/output matching
networks, as well as thermal and intrinsic effects of semicon-
ductors, can introduce delays in the amplified signal, known as
memory effects. Considering modern quality standards, these
distortions cannot be neglected.

One widely used method for PA linearization is Digital
Pre-Distortion (DPD) [2]. This method involves applying the
inverse signal of the PA prior to transmission, resulting in a
linear relationship between the DPD input and the PA output.
To implement DPD effectively, a behavioral model of the

PA with high accuracy and low computational complexity is
required.

Among the available models for PA behavioral modeling,
two commonly employed approaches are polynomial models,
such as the Volterra series and its derivatives and simplifi-
cations (e.g., memory polynomials (MP) [2] and generalized
memory polynomials (GMP) [2]), and artificial neural net-
works like multi-layer perceptrons (MLP) [2] and time delay
neural networks (TDNN) [2]. In previous investigations [3],
[4], the cascades among two and three Volterra series were
investigated and better performance was achieved in relation
to the traditional model.

The objective of this study was to compare the results of
the traditional low-pass equivalent Volterra model and the
better result of the cascade model with the results of a mod-
ified Volterra model, named Multi-Depth Memories (MDM)
Volterra Series model, that takes into account several previous
instants, represented by moving averages that have different
windows (multi-depth) used as instantaneous memories that
are applied on the traditional low-pass equivalent Volterra
series. Numerical experiments were conducted in Python to
validate the effectiveness of the proposed model.

Moving averages have been already employed in PA behav-
ioral models to separate the PA static and dynamic behaviors
for Box-Oriented Models by averaging the dispersion of the
signal [5], [6]. However, in this article, moving averages with
distinct window sizes are being employed to take into account
the usage of the amplifier in multiple time-scales, using a
single nonlinear-dynamic model for the PA modeling.

II. BEHAVIORAL MODELING DESCRIBED BY THE MDM
VOLTERRA SERIES

Behavioral modeling is the process of describing the be-
havior of a device, either through physical or mathematical
representations. Physical models require a comprehensive un-
derstanding of the object being modeled, including its inter-
nal components, resulting in high computational complexity.
Therefore, when it comes to modeling power amplifiers, the
use of physical models is avoided due to the preference for



Fig. 1. Proposed Volterra series model with memories based on moving averages of the sampled signal

low-complexity models. Mathematical modeling of the power
amplifier involves abstracting the actual process, treating the
amplifier as a ”black box” with only the input and output infor-
mation available. With this limited data and a selected model,
the coefficients for the behavioral model can be calculated.

In this research, the employed model is based on the
Volterra series, which is a polynomial series known for its
ability to reproduce memory effects. Unlike models that rely
solely on the instantaneous input, the Volterra series takes into
account the previous M instants (for discrete-time models).
This characteristic enables a non-linear relationship between
the output and input, effectively capturing the non-linearity
and memory effects of the power amplifier. Furthermore, the
series maintains linearity in its parameters without sacrificing
generality. For the purpose of modeling radio frequency power
amplifiers (RFPA), it is convenient to adopt the discrete-time
low-pass equivalent Volterra series model [7], described by:
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where x̂(n) and ŷ(n) are the complex-valued envelopes,
respectively, at the input and output of the PA, (∗) de-
notes the complex conjugate operator, M is the memory
length, P0 = 2P − 1 is the polynomial order truncation
and ĥ2p−1(q1, · · · , q2p−1) are the low-pass equivalent Volterra
kernels. The number of parameters to be determined in (1) is
given by

L =

P−1∑
p=0

[(M + p)!]2(M + p+ 1)

(M !)2(p!)2(p+ 1)
(2)

As the number of coefficients in (2) increases quickly with
P and M , we are going to investigate another modeling,
looking for complexity reduction. In this particular case,
instead of directly using the previous instants of the input

signal in the Volterra series, we employ moving averages. A
moving average is a mathematical operation that calculates
the average of a set of values over a sliding window. By using
moving averages as the previous instants, we can effectively
capture the temporal characteristics and memory effects of the
system.

Instead of using a fixed window size for all the moving
averages, we employ varying window sizes. By utilizing
different window sizes as the previous instants in the Volterra
series, we can capture the system behavior at various time
scales. For example, if we have a small window size, it
will capture short-term variations in the input signal. This
enables us to model and understand the system fast-changing
dynamics. On the other hand, a larger window size captures
longer-term trends and variations in the input signal, providing
insights into the system slower dynamics and memory effects
over a more extended period.

By incorporating moving averages with different window
sizes into the Volterra series, we obtain a more comprehensive
representation of the system behavior. This approach allows us
to account for both short-term and long-term memory effects,
nonlinearities, and temporal characteristics of the power am-
plifier accurately.

The proposed model, represented by Fig. 1 in a simplified
block diagram, presents the modified Volterra series in parallel
with the PA to be modeled, where D.Z−1 represents a unit
delay block applied D times. In this approach, M is the
number of moving averages to be employed, M · D is the
memory length of the model, 2P − 1 is the polynomial order
truncation, ŷ[n] is the estimated output and e[n] is the error
between the measured and the estimated output of the PA. As
the parameters of the series, M and P , remain the same, the
number of coefficients of the series is not changed.

Since the model is linear in its coefficients, we can extract
the coefficients by applying the least squares method. In
Python, the coefficient extraction process involves using the
output vector Y with dimensions (N −M.D)× 1, the matrix
X with dimensions (N − M.D) × L, which corresponds to



the products in (1), and the desired coefficient vector H that
relates X and Y :

Y = X ·H −→ H = numpy.linalg.pinv(X)@Y (3)

III. CASE STUDY FOR MODEL VALIDATION

In this research the proposed model was applied in a case
study with a class AB PA with GaN based technology, excited
by a 900 MHz carrier and stimulated by a WCDMA 3GPP
signal with 3.84 MHz of bandwidth. The signals were mea-
sured using a vector signal analyzer (VSA) with a sampling
frequency of 61.44 MHz. The data was previously collected
and detailed in [8]. For performance analysis, the normalized
mean square error (NMSE), was calculated for all computed
cases as:

NMSE = 10log

∑N
n=1(ŷ[n]− y[n+M ·D])2∑N

n=1 y[n+M ·D]2
[dB] (4)

where y[∗] is the measured output validation data and ŷ[∗] is
the estimated output signal, both complex-valued vectors with
dimension N +M ·D and N respectively.

For the validation of the method, the model was trained with
several combinations of the parameters, that satisfy

[1, 0, 1] ≤ [P,M,D] ≤ [6, 6, 10] and L ≤ 1000 (5)

A total of 280 cases were conducted and subsequently
ranked based on decreasing NMSE. Figure 2 illustrates the
NMSE curves of the training dataset for both the proposed
and traditional methods, along with their respective validation
curves. In this graph, if a result exhibits more coefficients
and a higher NMSE compared to another result with fewer
coefficients on the same curve, it is excluded from the plot. The
regions surrounding the curves represent a deviation limit of
3% from the NMSE curve. In this study, a deviation exceeding
3% was considered indicative of overfitting.

Fig. 2. NMSE curves for the traditional (blue) and proposed (red) models
with a 3% trust region

As can be observed from Fig. 2, models with more than
250 coefficients exhibit signs of overfitting. In consequence,
only models with fewer than 250 coefficients were considered.
Figure 3 presents a 3D visualization of the NMSE curve for
the proposed method with the accounted points.

Fig. 3. 3D visualization of the NMSE curve for the proposed method as a
function of the number of coefficients and the memory length.

Table I presents a comparative analysis among the best
results achieved by three different models: the traditional Low-
pass Volterra Series, the Three-blocks Cascade Volterra Series
as explored in [4], and the proposed Multi-Depth Memories
Volterra Series. Additionally, the initial results that surpassed
the traditional model are also included for the last two models.

TABLE I
COMPARATIVE ANALYSIS OF THE MODELS

M1 P1 D M2 P2 M2 P3 L
NMSE [dB]

Extraction Validation
3 3 - - - - - 244 -38.830 -38.233
4 3 - - - - - 944 -42.280 -36.987
0 2 - 1 1 5 2 136 -38.921 -38.571
0 2 - 6 2 1 4 245 -41.359 -40.595
3 2 6 - - - - 81 -42.308 -42.042
3 3 6 - - - - 244 -46.074 -44.566
4 3 6 - - - - 944 -51.921 -43.650

In Fig. 4, samples of the characteristic curves AM-AM and
AM-PM are presented. These curves depict the relationship
between the amplitude of the input signal and the correspond-
ing output signal, as well as the amplitude of the input signal
and the phase shift between the input and output signals.
The curves represent the best results obtained from both the
traditional model and the proposed model when applied to a
validation dataset.

Finally, Fig. 5 presents the spectrum of the input and output
signals applied to the PA, as well as the error spectrum for
both the traditional and Multi-Depth Memories Volterra series.
Additionally, Fig. 6 depicts the error accumulation region
using heatmaps for both methodologies.

IV. CONCLUSIONS

Through the analysis of the results, we are able to observe
the best approaches given by the Multi-Depth Memories
Volterra series model. The computational complexity was
reduced by up to 81%, when the average between the NMSE
of extraction and validation for the proposed model with 44
coefficients had a greater result than the traditional model
with 231 coefficients (against 51% of reduction obtained by



Fig. 4. Measured and modeled dynamic AM/AM (A.) and AM/PM (B.)
characteristic for 3GPP WCDMA input signal.

Fig. 5. Power Spectral Density (PSD) for measured input and output signals
and modeled errors

the three-blocks cascade model [4]). The maximum difference
between the NMSE curves was −7.244 dB in relation to the
traditional model (against −3.787 dB of NMSE reduction ob-
tained by the three-blocks cascade model [4]). This significant
reduction in error was observed across the majority of the
frequency domain, as illustrated in Fig. 5. The convergence of
the error can be observed in Fig. 6. The results highlight the
effectiveness of the MDM Volterra series model, which utilizes
different window sizes for the moving averages in the Volterra

Fig. 6. Heatmap from error accumulation region for the two models

series. This approach enhances our modeling capabilities by
capturing the system behavior at various time scales, providing
a more comprehensive understanding of the power amplifier
dynamics. As a result, we can accurately represent its nonlin-
earities, memory effects, and temporal characteristics. Future
works would explore a cascade model combining two MDM
Volterra series models. This approach would involve one
model responsible for capturing fast-changing dynamics, while
the other model focuses on slower dynamics and memory
effects. By considering these aspects, we can further enhance
the modeling accuracy and capture the complex behavior of
the power amplifier more comprehensively.
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